CTE208 Systems Analysis & Design
Syllabus

Course Details
Course Name: CTE208 – Systems Analysis & Design
Course Credits: 3
ECTS Credits: 6
Prerequisite:

Semester: 2011-2012 Fall
Instructor: Serhat M. AZGUR
E-mail: azgur@ctp.bilkent.edu.tr
Room, Phone: GZ-14A, x-3361
Office Hours: Weekdays, 08:30 – 18:00

Lecture hours and place: Tue: 10:40 – 12:30, GZ55 - Fri: 08:40 – 10:30, GB52
URL (web pages): http://2011-2012-fall.moodle.bilkent.edu.tr/

Course Description
This course presents a comprehensive introduction to the systems design skills in information management that students, as future users and/or systems analysts, will need to deal with in computer-integrated business environment. The course provides the students with the skills to identify business problems which may be solved by technology-based solutions, determine requirements for information systems solutions, and develop designs which form the basis for implementing systems, as well as a strong foundation in systems analysis and design concepts, methodologies, techniques, and tools.

The course includes Waterfall Model (Systems Development Life Cycle), Systems Analysis and Design Techniques (Process Modeling (DFDs), Logical Modeling (decision tree, decision table, structured English), Data Modelling (E-R Diagrams), Object-Oriented Modelling (UML-use cases). Project Management tools (CPM, Gantt, PERT) and evaluation of engineering standards such as MIL-STD-498, IEEE/EIA 12207, ISO 9000-2000 and CMM.

There will be lectures and discussions given by invited guests from the Industry.

Aim
This course aims to introduce students to the basic principles of systems analysis and design and to give them experience of developing a software system in a team. Specifically:
• introduce students to the traditional practices for specification, design, implementation, testing and operation of information systems,
• provide a framework for more detailed material on design which is taught in other courses, involve students into development of a sample project (term project), which approximates as closely as possible in the university environment with the project development conditions found in the industry..

Learning Outcomes
On successful completion of this course students should:
• understand the qualifications of systems analysts and project managers to design better information systems.
• discuss the aims and objectives of information systems in the context of a human activity system for better systems development.
• understand analysis and design techniques and methods to meet the special needs of current information systems.
• use variety of analysis and design methods to specify and propose information systems.
• be able to produce and document the key deliverable’s of software development life cycle.
• know how to use MS Project as a CASE tool.
• identify current industry standards for information systems development.

Course Outline:

• The Systems Development Environment & SDLC
• Systems Analyst and Managing the Information Systems Project
• Automated Tools for Systems Development
• Identifying and Selecting Systems Development Projects
• Initiating and Planning Information Systems Projects
• Determining System Requirements and Design Strategies
• Structuring System Requirements
 i. Process Modelling
 ii. Logic Modelling
 iii. Conceptual Data Modelling
• Object-Oriented Analysis and Design
• Alternative Development Strategies
• Implementation & Test Strategies, Maintaining Information Systems
• Software Systems Development Standards & Project Management

Text Book:

Hoffer, J., J. George and J. Valacich. Modern Systems Analysis and Design 3rd ed. ISBN #0130173045. Prentice-Hall, Inc. (which is available at the Bilkent University Bookstore).

Reference Books:

Any book whose name starts with "Systems Analysis and Design" definitely helps to grasp the subject better. The following books can be consulted for different approaches or further readings (they are all available at the Bilkent University Library):

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>BLISS-Call #</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Analysis And Design</td>
<td>Alan Dennis, Barbara Haley Wixom</td>
<td>QA402.D43 2000</td>
<td>0-471-24100-8</td>
</tr>
<tr>
<td>Systems Analysis And Design</td>
<td>Kenneth E. Kendall, Julie E. Kendall</td>
<td>QA76.9.S88K45 1992</td>
<td></td>
</tr>
<tr>
<td>Analysis Within The Systems Development Life-Cycle</td>
<td>Rosemary Rock-Evans</td>
<td>QA76.9.S88R59 1987</td>
<td>0-08-034100-4</td>
</tr>
</tbody>
</table>

Other Resources:

• Lecture notes prepared by the instructor;
• Web references/resources.
Instructional methods, techniques and tools:
- In class teaching,
- Lab Sessions, Labworks concerning Gantt charts and Pert charts using Microsoft Project s/w.
- Subject related questions-answers and discussions on the web through Moodle,
- Invited guests from the Industry.

Assessments & Grading:
To receive a passing credit, students must achieve at least 50 percent on the course composite grade (= "D"). Although, the assessments and weights may vary from semester to semester, the weighting of the course composite grade for this semester is as follows:
- Quizzes/Homeworks and Lab: 5%
- Term Project: 25%
- Midterm: 25%
- Final: 35%
- In-class participation: 10%

There will be several quizzes and homeworks; the number will depend on the particular academic semester.

Moodle Course Management System is extensively used throughout the academic semester. Questions and answers of quizzes and exams can be found in Moodle together with the other related resources.

Term Project Descriptions
Scope, content and sample topics of the Term Project shall be announced in Moodle and/or CTE web site (distribution of 25% (course grade) is as follows:
- 10% comprises the presentation at the end of the semester,
- 5% comprises the peer evaluation of the members of each project group.
- 10% comprises how well the Term Project is prepared (guidelines will be announced in Moodle).

Policies for Late Submissions (if applicable)
There is a penalty for late submission for homeworks and the Term Project.
- 5% off of the announced grade for the first week,
- 1% off for every other following week.

Attendance:
According to Bilkent University's regulations attendance is mandatory. In-class Participation, which is 10% of the final grade, is going to be decided on the following factors:
- Lecture attendances (although attendance is compulsory, I take roll calls).
- Active participation in class discussions.
- Reflection letter to be written at the end of the semester, and
- Online participation in Moodle.

Lab attendance is mandatory. If you miss more than three lab sessions (all valid excuses must be endorsed by the Bilkent Health Center and/or Department Chair), you will receive an automatic zero as the Lab grade.

Make-up Policy
If you have missed any one of the assessments (whether an exam or any other type) due to a serious problem, you must inform the instructor immediately, together with the supporting documentation (e.g. hospital report, police report etc.). You may not be able to get a make-up exam or any other type of compensation if your case is not convincing.
Academic Integrity

We trust our students are honorable and honest, so that they do not copy from each other’s work to receive a grade they do not deserve. We believe, each student has a responsibility to understand, accept and comply with the university’s standards of academic conduct as set forth by the Code of Academic Conduct, as well as policies established by the schools and colleges. Cheating, collusion, misconduct, fabrication, and plagiarism are considered serious offense. "Student Code Of Discipline" is presented in the following web page:
http://www.bilkent.edu.tr/bilkent/admin-unit/hukukm/edisiplin.html

Weekly outline: (based on a semester with 14 full weeks, with a week reserved for midterm)

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Information about the course. Introduction, Information systems - 1 Lecture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information systems as an enabling technology for human endeavour. Concepts: data, information, knowledge, system, purposive system, Systems analysts vs. programmers in Systems Development. Definitions – 3 Lectures</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>The “Systems Analyst” & Managing the Information Systems Projects Analyzing and Problem Solving - 3 Lectures Ability (or capability ?) of a Systems Analyst and Systems Thinking. Technical and Management Skills of a Project Manager. Review & Applications – 1 Lecture Gantt and PERT charts. Specific field applications, case study and exercises.</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Automated Tools for Systems Development CASE in Systems Development Process – 3 Lectures What are the CASE tools, why do we need them ? Reverse engineering and reengineering. Typical components of a CASE (automated software tools) environment. The Software Life Cycle - 1 Lecture Description of the phases of the software life cycle and the major deliverables and activities associated with each phase.</td>
<td></td>
</tr>
</tbody>
</table>
| 05 | Initiating & Planning Information Systems Projects Structures as output parameters.
Information Systems Projects - 1 Lecture
What is Statement of Work (SOW) and BPL (Baseline Project Plan)?
Feasibility study.
Cost-Benefit Analysis. Value (cost of money) – 1 Lecture
Find the cost of the IS Project and estimate the (benefit) gains of the finished system. Find Net Present Value. Break-Even Analysis.
Tangible/Intangible Benefits, Tangible/Intangible Costs.
Managing Information Systems Projects - 1 Lecture
What is CPM, PERT and Gantt charts? And how to prepare and use them?
| Labwork 01
MSProject
Application-1 |
| 06 | Determining System Requirements and Design Strategies
Information Gathering - 4 Lectures
Deficiencies in the traditional approach to requirements.
| 07 | MIDTERM EXAM |
| 08 | Structuring System Requirements
Process Modeling - 2 Lectures
Data Flow Diagram (DFD) mechanics. Developing DFDs, Analysis and design techniques. Combining techniques within design methods.
Logic Modeling – 2 Lectures
Definitions and examples of Structured English, Decision Tables and Decision Trees. How to construct and use them.
| 09 | Conceptual Data Modelling
E-R Diagrams – 3 Lectures
Definitions, usage and examples of Conceptual Data Modeling.
| Labwork 02
MSProject
Application-2 |
| 10 | Object-Oriented Analysis, UML. Alternative Design Strategies
Object-Oriented Analysis & Design – 1 Lecture
Object-Oriented Modeling.
Unified Modeling Language – 2 Lectures
UML, Use Cases. Examples and How to.
Alternative design strategies – 1 Lecture
Selecting the best alternative design strategy using qualitative & quantitative methods. Updating Baseline Project Plan.
| 11 | Logical & Physical Design, Designing Forms and Reports, Designing User Interface Details
SDLC Design Considerations – 2 Lectures
Designing INPUT and OUTPUT, forms and reports, good and bad examples.
SDLC Design Considerations – 2 Lectures
Man-machine communication. User interface details.
|
| | | Systems Implementation, Maintaining Information Systems
| | | *Implementation and Testing* - 4 Lectures
| | | Project Management
| | | *Project Management* - 1 Lecture
| | | Planning and cost estimation (review). Progress monitoring. Team structure and team management.
| | | *Quality Management* - 1 Lecture
| | | Validation, verification and testing. Quality plans. Walkthroughs, code inspections and other types of review. Role of the quality assurance group.
| | | *Configuration Management* - 1 Lecture
| | | *Engineering Standards* - 1 Lecture
| | | Software development standards in the industry like MIL-STD-498, IEEE-STD-016, ISO 12207 and CMM.
| | | Presentation of Term-Projects
| | | *Case Studies* - 4 Lectures
| | | Term Projects of each team will be discussed extensively. |